GRADE 7

Evaluation Checkpoint #1 (DUE APRIL 7)

Activity: Students create a comic strip that takes a real life example and demonstrates the particle theory of solids, liquids and gases. The comic must include:

- 1. ways in which heat is produced
- 2. the processes that each state undertakes in order to physically change, as well as
- 3. what happens to the particles themselves (how heat affects the motion of particles and the effects of heat on volume in solids).

Overall Expectation 3.Demonstrate an understanding of heat as a form of energy that is associated with the movement of particles and is essential to many processes within the earth's systems (7s62).

	Level 4	Level 3	Level 2	Level 1
3.2 state the	All postulates of the	Most postulates of the	Some postulates of the	Few postulates of the
postulates of the	particle theory of	particle theory of	particle theory of	particle theory of
particle theory of	matter are	matter are	matter are	matter are
matter (7s51)	incorporated	incorporated	incorporated	incorporated
3.2 identify ways in	6+ ways in which heat	4-5 ways in which heat	2-3 ways in which heat	0-1 ways in which heat
which heat is	is produced are	is produced are	is produced are	is produced are
produced (7s72)	incorporated	incorporated	incorporated	incorporated
3.1 use the particle	All postulates of the	Most postulates of the	Some postulates of the	Few postulates of the
theory to compare	particle theory are	particle theory are	particle theory are	particle theory are
how heat affects the	used to compare how			
motion of particles in	heat affects the motion			
a solid, a liquid, and	of particles in a solid, a			
a gas (7s71)	liquid, and a gas	liquid, and/or a gas	liquid, or a gas	liquid, or a gas
3.3 use the particle	All postulates of the	Most postulates of the	Some postulates of the	Few postulates of the
theory to explain the	particle theory are	particle theory are	particle theory are	particle theory are
effects of heat on	used to explain the			
volume in solids,	effects of heat on			
liquids, and gases	volume in solids,	volume in solids,	volume in solids,	volume in solids,
(7s73)	liquids, and gases	liquids, and/or gases	liquids, or a gases	liquids, or a gases

Evaluation Checkpoint #2

Challenge: Take a real recipe and modify it to include the following: concepts and terms

- _ identify the ways in which heat is produced in the recipe (conduction, convection, and/or radiation)
- identify all of the ingredients as pure substances, mixtures, mechanical mixtures, and/or solutions (solvents and solutes)
- _ use the particle theory to describe the difference between pure substances and mixtures
- _ describe the solubility and rate of dissolving of the ingredients
- describe the concentration of a solution as unsaturated or saturated as well as in qualitative terms (e.g., dilute, concentrated) and in quantitative terms (e.g., 5 grams of salt in 1000 ml of water)
- use the particle theory of matter to compare how heat affected the motion of particles and explain the effects of heat on the volume of the recipe

Overall Expectations 3. Demonstrate an understanding of the properties of pure substances and mixtures, and describe these characteristics using the particle theory (7s41).

3. Demonstrate an understanding of heat as a form of energy that is associated with the movement of particles and is essential to many processes within the earth's systems (7s62).

	Level 4	Level 3	Level 2	Level 1
3.2 identify ways in which heat is produced (7s72) and 3.4 explain how heat is	Identifies and explains all ways in which heat is produced in the	Identifies all ways in which heat is produced in the recipe and explains	Identifies some ways in which heat is produced in the recipe and	Identifies one/no ways in which heat is produced in the recipe and
transmitted through conduction , 3.6	recipe and explains (using scientific	how heat is transmitted through	explains how heat is transmitted	explains how heat is transmitted
radiation, (7s76) and/or 3.5 convection, (7s75)	vocabulary) how heat is transmitted through conduction, convection, and/or radiation with a high degree of effectiveness	conduction, convection, and/or radiation with considerable effectiveness	through conduction, convection, and/or radiation with some effectiveness	through conduction, convection, and/or radiation with limited effectiveness
3.1 distinguish between pure substances (e.g., distilled water, salt, copper pipe) and mixtures (e.g., salad dressing, chocolate	All ingredients are distinguished correctly as pure substances or mixtures. Mixtures are further	Most ingredients are distinguished correctly as pure substances or mixtures. Mixtures are further	Some ingredients are distinguished correctly as pure substances or mixtures. Mixtures are further	Few/No ingredients are distinguished correctly as pure substances or mixtures. Mixtures
chip cookies) (7s50) and 3.4 distinguish between solutions and mechanical mixtures (7s53) and 3.6 identify the	identified as mechanical mixtures or solutions and components of solutions are identified as solvents	identified as mechanical mixtures or solutions and components of solutions are identified as solvents	identified as mechanical mixtures or solutions and components of solutions are identified as solvents	are further identified as mechanical mixtures or solutions and components of
components of a solution (e.g., solvent , solute) (7s55)	or solutes	or solutes	or solutes	solutions are identified as solvents or solutes
3.3 use the particle theory to describe the difference between pure substances (which have identical particles) and mixtures (which have different particles) (7s52)	With a high degree of accuracy, the particle theory is used to explain the difference between pure substances and mixtures	With considerable accuracy, the particle theory is used to explain the difference between pure substances and mixtures	Pure substances or mixtures are described with some accuracy	Pure substances or mixtures are described with limited accuracy
3.8 describe the concentration of a solution in qualitative terms (e.g., dilute, concentrated) and in quantitative terms (e.g., 5 grams of salt in 1000 ml of water) (7s57)	The concentration of solutions are described in qualitative and quantitative terms with a high degree accuracy	The concentration of solutions are described in qualitative and quantitative terms with considerable accuracy	The concentration of solutions are described in qualitative or quantitative terms with some accuracy	The concentration of solutions are described in qualitative or quantitative terms with limited accuracy
3.1 use the particle theory to compare how heat affects the motion of particles in a cellid a liquid, and a gap (7571) and 3.2 use	The particle theory is used to explain the effects of heat on the volume and motion of particles in	The particle theory is used to explain the effects of heat on the volume or motion of particles in	The effects of heat on the volume or motion of particles in solids,	The effects of heat on the volume or motion of particles in solids,
solid, a liquid, and a gas (7s71) and 3.3 use the particle theory to explain the effects of	volume and motion of particles in solids, liquids, and gases	volume or motion of particles in solids, liquids, and gases	liquids, and gases is explained with some effectiveness	liquids, and gases is explained with limited effectiveness

heat on volume in solids, liquids, and		
gases (7s73)		